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Abstract: Fault diagnostics represent a vital task in the monitoring of mission critical systems,
as well as for condition-based maintenance of machinery in general. The focus of this report is on
the early detection, and subsequent classification, of small changes in the behavior of mechanical
systems. Such changes, known as incipient faults, portend the development of more serious
failures.

Physical models of machinery processes, which are useful for model-based fault detection and iso-
lation, are not generally available in most applications. Instead, the approach to fault detection
considered in this study involves the application of statistical change detection. Statistical change
detection is essentially the problem of homogeneity testing within a time series. In particular, sta-
tistical change detection algorithms seek to detect situations in which a given model that describes
the initial behavior of a time series, eventually fails to describe that time series accurately. The
performance of non-likelihood-ratio techniques are evaluated on a CH-47D helicopter combiner
transmission (non-seeded) fault; results indicate that the fault is detected in its incipient stage.

The approach to fault isolation (i.e., classification) discussed herein is based on the use of
minimum-logistic-loss polynomial neural networks (PNNs). The fault isolation capabilities of
PNN classification networks are investigated using seeded-fault data taken from CH-46E heli-
copter combiner transmissions. Perfect fault classification results are achieved.

Key Words: Condition-based maintenance, Fault diagnostics, Health monitoring, Incipient faults,
Nonparametric statistics, Pattern recognition, Polynomial neural networks, Statistical change de-
tection

Introduction: Mechanical system maintenance is inherently a safety issue for critical systems
such as helicopter transmissions, since even a single in-service failure is intolerable. The main-
tenance strategy in such systems is made more difficult by the need to minimize unnecessary
inspections, since this requires expensive teardown and rebuild procedures. Alternatively, it is
also expensive to have unexpected unavailability of such systems. What is needed to address
this dilemma in commercial, industrial, and military systems, such as aviation and manufacturing
process control, is transition from a “time-based” to “condition-based” maintenance (CBM) strat-
egy. Such a transition is critical because of the costs associated with maintenance. Enterprises
employing such diagnostic capabilities would realize enhanced responsiveness, competitiveness,
profitability, and consumer image. The need for diagnostics capabilities is, if anything, even
greater for military systems, since maintenance requirements during military conflict impart a
tactical disadvantage. At such times, spare aircraft, for example, may simply not be available.




In the case of helicopters, on-board health and usage monitoring systems (HUMS) could be inte-
grated with groundstations, analyzing data that are collected and stored for post-flight analysis.
Affordable computer workstations could readily provide the needed processing power (special-
purpose hardware is not needed). For most mechanical system faults, need for an on-line (i.e.,
airborne) system would be determined by the possible risk of the off-line (i.e., groundstation)
system not detecting a fault sufficiently early for the operator to take maintenance action, or not
having significant ground support available (such as the situation of forward deployment). Rare
faults can initiate and progress to complete failure within the time of a single mission (e.g., <
4 hours), so a trade-off must be made between the costs and benefits of on-board (on-line) and
post-flight (off-line) analyses.

The goal of this work is to develop capabilities that will lead to affordable systems that can
diagnose faults sufficiently early to significantly enhance safety, improve the likelihood of accom-
plishing mission objectives, prevent the loss of assets, and reduce maintenance costs.

Diagnostics: Mod:l-based fault detection and isolation (FDI) is the method of choice when
physical models of machinery processes are available (see, e.g., [6]). With the present state of the
art, however, such models are available only for very simple and idealized mechanisms, which do
not capture the necessary complexities of real-world processes. Even re'atively simple gearboxes,
such as those of helicopter tail rotors, can have a dozen or more shafts when auxiliary equipment
is included, along wiun dozens of gears and bearings.

Although pattern-recognition techniques are often used to implement .ault detectors via classifiers
that process feature-set data, such an approach is not entirely satisfactory. First, it is not possible
to ensure with ad hoc feature selection that one has chosen a sufficient feature set with which to
distinguish normal behavior from all possible abnormal behaviors. Even if the features selected
perform well on the available training and test data (a necessary condition), this provides no
information regarding the sufficiency of such features for detecting previously unseen types of
faults. Validation of the feature set using available data does not ensure that abnormal data will
not be encountered that the system is unable to classify correctly.

Second, pattern-recognition techniques used for detection that rely on extracted features often
require access to a significant amount of training data to achieve acceptable performance. In
many applications such data are expensive to acquire {e.g., flight vehicles) and may therefore
be available only in very limited quantities. Additionally, feature-based approaches require an
inordinate amount of labor for designing each detector/classifier system, and it is unlikely that
features engineered for one system can be used reliably in other systems of different design. Even
though the same features may, in part, be useful, the entire process of validating the features on
test data has to be repeated for each such system, once again with no real assurances regarding
their sufficiency.

A better approach, both from the viewpoint of increasing the reliability of detection and in
reducing development costs (through reduced engineering manpower needed to synthesize such
detectors), is to use a general methodology that can be applied more readily to different systems. .
Statistical change detection represents such an approach that can be used for the early det-ction
of small changes in systems. Statistical change detection does not require a database oi fault
examples, allowing novel situations and faults to be detected. Following fault detection, fault
classification may be performed by utilizing pattern recognition techniques (e.g., neural networks).
With fault classification, “feature engineering” also may be avoided by using parameters of the .
models employed in the statistical change detection algorithms as “features;” these parameters
would need to be adapted on line so as to continually “fit” the data. (Note that the detector
would have to be isolated from such adaptation, since the detector relies on a fixed whitening .
model — even if all of its coefficients are set to zero.) The motivation for such use of the:
parameters is that it obviates the need to seek ad hoc feature sets for fault classification in’
machinery, which is the approach currently taken in nearly all diagnostic systems that are not :
based on parametric models. The justification for such use of these parameter values is that many :
modern spectral analysis techniques are based on nonparametric (e.g., autoregressive, moving'
average, autoregressive-moving average, etc.) models; these techniques utilize model parameter :
estimates to obtain spectral densities. :




Statistical Change Detection: Generally speaking, the detection algorithms consist of two
parts: signal processing to reduce the observed times series data to a single real number, i.e., the
computation of a detection statistic; and the comparison of this real number to a threshold to
make a decision. The signal processing can, in principle, be implemented with no e priori data,
by synthesizing whitening filters (both their structure and parameter values) on-line. The use of
neural network algorithms can be particularly beneficial here. The second part of detection re-
quires determination of the detection threshold, for which access to some a priori data is generally
needed, but in certain cases this threshold can be set using theoretical values that do not depend
on data (e.g., use of x? statistics); additionally, useful thresholds can also be learned adaptively
on-line by monitoring false-alarm statistics. In monitoring mission critical systems for potential
faults, it is vital that false alarms be minimized, since mission abort decisions have their own
price (e.g., when aborting a mission over water or hostile territory).

Statistical change detection thus provides a framework within which vibration monitoring of me-
chanical systems can be approached. Discrete-time change detection problems can be formulated
as parametric hypothesis testing problems based on a series y1,¥y2,...,yn of random measure-
ments. We assume that these measurements are generated by a statistical model My up until an
unknown time tg—1, and then that they are generated by another statistical model M; thereafter.

There are two types of change-detection paradigms of interest: off- and on-line detection. In
off-line change “atection, the problem of interest is to examine a fixed-length set of measurements
Y1,Y2,-- -, Yn, and to decide whether or not ¢y < n. In this framework, the detection criterion
is to maximize the probability of detecting a change, withi. a constraint on the ¢ 'se-alarm
probability. In the on-line detection framework, the problem of interest is to continuous., monitor
the observations to detect the change point ¢y as quickly as possible after it occurs, again within
a constraint on the allowable rate of false alarms.

Because of the similarity between off- and on-line change detection methodologies, the signal-
processing algorithms used in the two approaches are similar structurally, and in fact can be
identical if computational issues are not of concern. Where the algorithms differ is in the decision-
making after the signal processing has been performed. This difference in decision-making pro-
cedures stems from the difference in their performance criteria: maximum detection sensitivity
for off-line algorithms (maximization of the power of the test subject to the constraint of a fixed
probability of false alarm), and quickest detection for on-line algorithms (minimization of the
delay for detection for a given mean time between false alarms).

For general change detection, the detection statistic is based on a fixed-length sliding window of
observations ¥p_ng, Yn—ng+1, - - - s Yn, and is a function of the form:

A=  max A}, (1)

n—n1<j<n-ng

where, n1 —ngp+1 is the length of the sliding window and n; is selected arbitrarily. The detection
statistic A™ is suitable, in the general case, for deciding whether or not ty < n. For each j =
1,2,...,n, A;‘ is a suitable detection statistic for deciding between the hypothesis that the model
changes from M, to M; at exactly time ¢y = j versus the Liypothesis that the model does not
switch at all during the n observations (i.e., that ¢y > n).

The explicit structure of the detection statistic depends on the two models My and M, on the na-
ture of the difference between them, and on the complexity that can be tolerated by the detection
system. In this context, there are four general types of detection statistics: the log-likelihood ratio,
the generalized likelihood ratio, the locally optimum statistic, and non-likelihood ratio (NLR )-based
statistics. These statistics were reviewed recently in [11, 12]; extensive comparisons of their perfor-
mance were also provided via simulations. Emphasis herein will be placed on NLR-based detection
statistics since these require the fewest assumptions; in particular, investigation is made into the
Zhang, Basseville, and Benveniste (ZBB) algorithm [19, 12], and of the Basseville-Nikiforov (BN)
algorithm (2, pp. 415 - 417].

After computation of the detection statistic from Fq. (1) through any of the above methods,
the decision algorithms for change detection are quite simple. For off-line change detection, the
presence of a change during the observation time window is announced only if A™ > 7o, where 7o
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is a threshold set as small as possible while satisfying a false-alarm constraint, P (A™ > 7,g|Mp) <
«, where P(-|Mp) denotes probability computed under model My, and o is the desired constraint
on the false-alarm probability. Alternatively, for on-line detection, a change from model My to
model M; is announced at the alarm time, t,, given by t, = min{n|A™ > 7,,}, where 7o, is a
decision threshold chosen to control the rate of false alarms. In general, the threshold in this
process must be chosen to balance the desire for detection efficiency — i.e., a low threshold to
achieve quick detection in on-line cases, high probability of detection in off-line cases — (which
would indicate a low threshold) with the high threshold needed to minimize false alarms. The
choice of threshold requires knowledge of the probability distribution 6f the statistic A™ under the
model My. It is usually not possible to determine this distribution in most problems of vibration
monitoring in mechanical systems; however, estimates based on Brownian motion approximations

to the statistics A7 are available in most cases (see, e.g., [2, 19]). Useful thresholds can also be

learned adaptively on-line by monitoring false-alarm statistics.

Nonparametric Models: In selecting a modeling approach, we are concerned with models
whose function is to whiten (i.e., remove correlation from) the observed process (e.g., sensed
vibration data), to produce an innovation or residual sequence that is used by the detection
algorithm. For this purpose, any modeling approach that is practical can be used to fit the data;
estimation neural networks are particularly useful here. The model should not, of course, overfit
the data; moreover, parsimonious models are generally desired to allow fast on-line parameter
estimation.

The consideration of external inputs as nuisances is paramount in the modeling of time-series
data of systems where these inputs are varying, but for which no observability is provided (e.g.,
changing helicopter flight regime). Instrumental variables (IV) techniques exist that provide
for parameter estimation under such circumstances (see, e.g., {7]}. In particular, Basseville and
Nikiforov [2] have shown that “the vibration monitoring problem is nothing but the problem of
detecting and diagnosing changes in the eigenstructure of a nonstationary multivariable system
in state-space form, or equivalently, in the AR part of a multivariable ARMA model with a
nonstationary MA part.” Because the AR parameters of systems are associated with its dynamics
and the MA parameters with the (generally time-varying) input excitation, the latter are often
treated as nuisance parameters and the AR process estimated using IV techniques. Instrumental
variables techniques are especially important when reduced-order process models are used, as
under-parametrization of models can result in situations where changes in the estimated system
dynamics reflect only variations in conditions that are not being monitored [19].

It is also important to note that high-accuracy models are generally not needed for detecting
incipient faults and small changes in machinery conditions; as a result, even non-harmonic pro-
cesses, which are difficult to model well with a reasonably small number of narameters, can be
monitored for purposes of detecting changes. Model consistency, at whatever vel of accuracy, is
the important attribute.

Secouu-order statistics are, in general, adequate when data being fitted are Gaussian. When data
are non-Gaussian, or represent the output of a nonlinear process, higher-order statistics (HOS)
may be more useful in characterizing a process. Part of the elegance of the statistical change
detection approach is its ready extensibility to include higher-order statistical moments where
neces~ary to exploit additional information in the data. In order to extend these methods to
HOS, it is necessary only to produce a parametrized model based on HOS. One can then apply a
generalization of the methodology used for second-order statistical estimation for the parameters
of this model.

An essential element of the statistical change detection algorithms is that, although they too may
exploit only second-order statistical information, they do not require reducing the “feature set”
further. If higher-than-second-order statistics are to be used, feature-based methods grow even
more problematic, for example, as bi-spectra now have on the order of N? spectral lines, and
t{i-spgctra on the order of N spectral lines, which must be reduced severely for inputting to a
classifier.

Fault Isolation: To isolate (i.e., classify) faults, classification neural networks that employ a con-
strained minimum-logistic-loss criterion are most appropriate. The Barron Associates, Inc. Al-
gorithm for Synthesis of Polynomial Networks for Classification (CLASS) [4] is used herein to
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synthesize these neural network classifiers. With CLASS, network outputs represent true esti-
mates of the a posteriori probabilities of class membership.

Using an estimation neural network to perform clussification is not optimal since it imposes
unnecessary constraints on the solution [16]; for example, for binary classification, the network
may be trained arbitrarily to output a “one” for a fault, and a “zero” for normal data. In essence,
use of the squared-error loss function corresponds to the maximum likelihood rule only in the
case of a Gaussian probability model for the distribution of the errors [7]. However, for multiclass
classification problems with categorical variables, a multinomial probability model in regular
exponential form is more suitable than the Gaussian model {1]. This approach is based on the
estimation of nonparametric probability density functions using minimum-logistic-loss polynomial
neural networks. The advantage of this approach is that the decision surfaces are more general
and reflect distributions found in the data. In this case, the CLASS subnetwork (polynomial)
functions are used to model the log-odds associated with the conditional probability of each class
given the observed inputs. In this setting, the maximum likelihood rule corresponds to the choice
of the logistic-loss function. Additionally, logistic discrimination has been shown to perform well
on both Gaussian and non-Gaussian data. Another advantage of the general multiclass logistic
model in regular exponential form is that, for classification problems, it forces satisfaction of the
probability constraints 0 < p; <1 and ¥ ;p; = 1.

In summary, the constrained minimum-logistic-loss criterion, which is explicitly aesigned for clas-
sificatior problems, provides performance superior to classifiers fitted using estimatic criteria.
Estimation networks place emphasis on estimation accuracy; minimum-logistic-loss networks in-
stead place emphasis on maximizing the likelihood of correct class discrimination. Whereas true
probabilities are always between 0 and 1, estimation networks are unbounded; in contrast, the
logistic-loss criterion correctly maps the network outputs onto [0,1]. A significant advantage of
the minimum-logistic-loss classifier is it gives the system a complete view of the problem at hand,
with the coefficients in all nodes fitted simultaneously to the entire synthesis data set, instead of
using separate fitting of partitioned data sets. This property also forces the trained nodes to be
consistent with each other. The logistic-loss network is a completely general way of reflecting the
natural distribution of the data, without imposing any assumed structure on the data.

Ensemble Processing for Cyclostationary Signals: The models discussed in the preceding
sections were assumed to be stochastically stationary (within pre-change or post-change regimes);
that is, their underlying statistical behavior was assumed to be invariant to arbitrary translations
in time. However, some of the data sets considered in this study are not stochastically stationary,
but rather they are cyclostationary, by which we mean that their underlying statistical behavior
is invariant to time translations that are integral multiples of a basic time period, C. (See, e.g.,
[6] or [9] for a discussion of cyclostationarity.) For example, in the monitoring of a helicopter
gearbox, cyclostationarity results from the cyclic motion of the gear shaft. In this section, we
d'isculsss modifications of the stutistical change detection sechniques for use on such cyclostationary
signals.

It should be noted that a change in the statistics of a signal may not be manifested in the same way
in every phase of the cyclic structure; evidence of a flaw in u gear, for example, may appear only
in phases of the measurement signal during which the flawed part of the gear is engaged. Thus,
processing the different phases of the signal together may reduce the detectability of such flaws.
For this reason, it is of interest either to consider separate processing of the different phases of
the cyclostationary signal, or to consider joint processing techniques that view the different phase
signals as components of a C-dimensional vector time series.

In the first case, we can essentially treat each phase as an independent channel that can be
‘processed by any of the scalar means. described in the preceding sections. In this approach, the
‘channels are combined 6nly after per-channel processing has been performed. This combining
can be either pre-decision or post-decision. For example, a detection statistic A”(c) can be

computed for each channel ¢ = 1,2,...,C, and then threshold comparison can be performed with
the combined statistic
max A"(c). (2)
1<eLC

Alternatively, each per-channel statistic A™(c) can be compared with a per-channel threshold A,
to produce C per-channel decisions, which can be combined to produce an overall decision. Such
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approaches will be designated ensemble approaches. The goal of ensemble processing is to improve
fault detectability through signal-to-noise ratio enhancement resulting from coherent averaging.
One such method in which a ZBB/NLR algorithm is used to perform per-channel processing is
demonstrated below.

Boeing Helicopter Gearbox Data: The Boeing helicopter gearbox data analyzed in this
report are based on vibration measurements performed on a CH-47D helicopter combiner trans-
mission spiral bevel input pinion gear that exhibits a classic bending-fatigue failure as a result of
test-cell overloading (156 percent rated torque). Therefore, this data does not represent a seeded-
fault test. Data collection techniques and other analyses performed previously on this data have
been reported in [13].

The data available for this study were comprised of two accelerometer channels digitized from"
high-speed analog tape recordings at a sample rate of 121,212 Hz; one accelerometer was mounted
on the combiner collector gear along an axis parallel to the output shaft center line. The other
accelerometer was mounted on the lefthand combiner input pinion on an axis perpendicular to the
input shaft center line. Both accelerometers had bandwidths of five to 20,000 Hz. A tachometer
signal was also available that provided a pulse for each revolution of the gear experiencing the
bending fatigue failure. The 23 Boeing data records available represent consecutive (but not con-
tiguous) 30-second segments extracted from each minute of time-series data; these data segments
initially represent normal operating conditions, and eventually include the initiation of a gear
microcrack at the root of a tooth, and its progression to a complete tooth failure, at which time
testing was terminated due to a sudden increase in the test cell external noise level.

Analysis Results Using Stewart Hughes Ltd. MSDA Analyzer: Based on metallurgical
analyses of the gear tooth that fractured in this experiment, Boeing has determined that a micro-
crack initiated approximately 13.25 minutes prior to complete gear tooth failure and termination
of the test data recording [13]. Alignment of the data available in the present study with that of

the Boeing analyses indicates that the microcrack initiated midway in file #12.

Analysis of the same data by Boeing using the Stewart Hughes Ltd. Mechanical Systems Diagnos-
tic Analyzer (MSDA) [13] led to post-fault initiation detection delays ranging from 2.85 minutes
to 9.45 minutes (detection in files #15 and #22, respectively), depending on the failure indicator
(i.e., figure-of-merit (FOM)) monitored. These time delays are based on the ten MSDA FOM, out
of the 32 investigated, that showed positive indications (i.e., significant and continuous change
from the long-term value developed during a period of normal operation) of the microcrack failure
progressing with time. .

Statistical Change Detection Using Time-Average Statistics: Because the data files are
not contig ~us segments of the ori«inal recording, an off-line ~hange detection approach was used.
Each of the available data files #1 - #23, with the exception of file #2, was subc*-“ded into 139
segments of 25,000 observations each; data file #2 was not used in these analyses because one of
the two digitized accelerometer channels was not readable by computer. Close examination of the
raw data also revealed several sections of the second accelerometer (i.e., channel 7) time-series

data that were saturated. In particular, files #6 and #20 contained regions in which the data
appeared to be magnified in bursts relative to the majority of the recorded data. These sections
were, therefore, eliminated. The first 25,000-sample segment of file #1, which represents normal
operational data, was reserved for estimating parameters and training (i.e., learning the mean
and covariance values used in computing the test statistics during evaluation).

Using the BN/NLR estimation algorithm {2], the AR parameters of a two-dimensional ARMA
(2,1) process were found; the BN/NLR algorithm requires that the order of the MA process, ¢,
be one less than the order of the AR process, p, thus ¢ = p — 1. The MA parameter(s) are then
not actually estimated, but suppressed using instrumental variables (IV) estimation techniques.
Subsequently, all of the other segments of the two channels of data were evaluated individually
based on the information provided by the training data sequence.

Based on the ratios of the mean values of the detection statistics, A%,/ A™y, (where the subscripts
ev and tr imply evaluation and training data respectively), which are provided graphically in

Fig. 1, it is seen that the fault appears to be detectable first in file #20; it is detectable consistently




thereafter (i.e., in files #21 - #23). Based on this result, the time duration between the estimated

time of fault initiation (i.e., midpoint in file #12) and the time of detection (i.e., detection delay)
was determined from the test time interval data to be approximately eight minutes.

Off-line change detection was also performed on the univariate (i.e., scalar) time-series data; these
results are illustrated in Fig. 2. The results for the univariate algorithm are slightly worse than
those for the multivariate algorithm in that the fault appears to be detectable consistently by
file #21. The BN/NLR algorithm scalar detection results therefore indicate a detection delay of
approximately nine minutes.
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Figure 1: Off-Line Boeing Helicopter Figure 2: Off-Line Boeing Heli-
Gearbox Results (BN/NLR Multidi- copter Gearbox Results (BN/NLR Al-
mensional Algorithm) gorithm); solid line represents ac-

celerometer channel 3, dashed line ac-
celerometer channel 7.

Statistical Change Detection Using Ensemble-Average Statistics: Analysis was per-
formed also using the ZBB/NLR Ensemble algorithm. This algorithm differs from the time-
average algorithm in that ensemble averages are used to calculate the detection statistics. The
tachometer signal was used to divide the data into distinct records; ! additional observation sam-
ples from the previous record were added to the beginning of each new record so that detection
statistics could be calculated for the first samples of each record. These records were grouped into
ensembles containing M records each. Breaking the data up in this way allows the basic statistics
to be phase dependent, providing C' different values, one for each phase of a record.

The use of ensemble averages is intended to help remove background noise, making the detection
statistic more sensitive to change detection. Also, using a nonstationary bias and covariance
matrix helps to improve modeling accuracy. A distinct detection threshold, A., may be chosen
for each phase within a record, further increasing the sensitivity of the detector.

Unfortunately, the time interval between tachometer pulses was not always constant, providing
" record lengths that varied slightly due to test stand speed fluctuations (4+0.34% to —1.01%).
To perform the off-line analysis, the two most common record lengths, 591 and 592 samples
respectively, were selected and then decimated by a factor of two, to achieve equal record lengths
of 296 samples (plus the I extra samples added to the beginning of each record). Use of this
procedure allowed about 70 percent of all data records to be included in the analysis. More
sophisticated techniques for synchronously averaging a signal are discussed in [14]. The decimated
records from the first two files were grouped into ensembles containing M = 50 records. These
ensembles were used, along with an AR(10) model, whose parameters were set to zero, to estimate
the training parameters. The remaining data were then evaluated using ensembles containing
M = 100 records.

The resulting statistics are graphed in Fig. 3. The ratio of the means of the test statistics for
accelerometer channel 3 show a potentially significant change from the earlier statistics for data
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files #14 - #23. The fault was not as manifest on accelerometer channel 7, as the statistics do

not show substantial change from a stable baseline until file #20. The results using the ensemble-
average ZBB/NLR algorithm, therefore, provide for a best-case detection delay of two minutes,
better than the other algorithms, including the MSDA analysis.

These results are based on use of the mean of the detection statistics computed over the entire
record, which does not fully exploit the algorithm. A set of C thresholds, ), one for each sample
time (i.e., phase) within a record, were therefore established; each was arbitrarily set equal to the

maximum value of the detection statistic seen in files #1 - #8. To avefd having to plot C different
detection statistics, fault detection was based instead on the maximum number of consecutive
times any one of the C phase-dependent detection statistics exceeded its corresponding A.. With

this method, a significant change in the detection statistics may be seen as early as file #11, as
shown in Fig. 4. This suggests that the microcrack may have initiated even earlier than the Boeing:
metallurgical analyses may have indicated, a finding that is not inconsistent with the approximate
nature of such analyses [15].

For purposes of comparison, results were obtained next for the time-average ZBB/NLR algorithm
using the same training and evaluation data and window lengths that were used to obtain the
results for the ensemble-average ZBB/NLR algorithm. For training and evaluation the decimated
data was used and M was set equal to 100. The ensemble-average ZBB/NLR algorithm (see
Fig. 4) was found to detect the fault up to eleven minutes before the time-average ZBB/NLR
algorithm. Thus, ensemble averaging clearly improves detection performance.
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Figure 3: Off-Line Boeing Helicopter Figure 4: Off-Line f -eing Helicopter

Gearbox Results (ZBB/NLR Ensem-
ble ...gorithm; solid line represents ac-
celerometer channel 3, dashed line ac-
celerometer channel 7.)

Gearbox Results (ZBB/NLR Ensem-
ble Algorithm with Multiple Thresh-
olds; solid line represents accelerome-
ter channel 3, dashed line accelerome-

ter channel 7.)

Fault Classification: Another important aspect of helicopter gearbox diagnostics is fault iso-
lation (i.e., classification); in other words, determining the type of fault present once a fault
has been detected. Contemporary fault classification, using neural networks, involves three basic
steps. The first is feature extraction, in which pertinent features that can be used to distinguish
one fault category from another are drawn from the data. A common method for extracting
features is the short-term Fourier transform (STFT). Feature selection is the second step in clas-
sification. To simplify the neural network classifier and to avoid overfitting the data, the number
of features input to the network must be kept to a minimum. Therefore, principal component
analysis (PCA) [8] was used to reduce the dimension of the feature vector. The final step is syn-
thesizing a classification neural network; here, the Barron Associates, Inc. Algorithm for Synthesis
of Polynomial Networks for Classification (CLASS) [4] was used.
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Classification Results for Westland Helicopter Gearbox Data: The Westland helicopter
gearbox data analyzed in this report are part of a data set collected on the Westland Helicopter
Universal Test Rig (see (17, 18]). The test rig was used to measure the vibration of a CH-46E
helicopter combiner transmission under several different test conditions. These conditions were
partitioned into nine different categories, as listed in Table 1. Since “Fault Types” one and nine
both represent “No Defect” cases, these categories were combined and are referenced as a single
class (viz. Class 1).

Table I: Westland Helicopter Gearbox Data Description

[ Fault Type Description ]
No Defect
Planetary Bearing Corrosion
Input Pinion Bearing Corrosion
S.B. Input Pinion Spalling
Helical Input Pinion Chipping
Helical Idler Gear Crack Prop.
Collector Gear Crack Prop.
Quill Shaft Crack Prop.
No Defect

W 0L~ O W N

Table 1I: Westland Helicopter Data Files, Fault Type vs. Torque Level

Torque Level (%)
Fault Class | 27 40 45 50 60 70 75 80 100 | Total
1 0 0 0 0 0 0 0 2 0 2
2 0 0 0 0 0 0 0 0 3 3
3 4 4 4 3 3 5 5 3 4 35
4 3 3 4 3 2 4 2 4 5 30
5 0 0 0 0 0 2 2 2 1 7
6 0 0 0 0 0 1 4 4 6 15
7 1 1 0 2 4 2 4 4 3 21
8 5 5 5 5 5 7 5 5 3 45
9 2 3 3 2 3 2 3 3 3 24
[ Total |15 16 16 15 17 23 25 27 28] 182 |

Data were collected at different torque levels between 27 percent and 100 percent of the full torque
level. In total, 182 different experiments were run. Table II shows the number of files obtained
for each fault category as a function of the different torque levels. Each data file consists of
approximately 22.6 seconds of data sampled at 100 kHz. Ten channels of data were recorded,
which included eight accelerometers, one tach pulse, and one test signal. The tachometer was
placed on the aft transmission in place of the rotor position motor. The tach signal is a 256
pulse-per-revolution signal wi  a once-per-revolution signal superimposed on it. Based on its
position in the gearbox, one revolution describes a complete rotation of the rotor position output,
not that of the main shaft.

All of the available data files, except for file #24 on tape 1, were divided into one-revolution
periods using the tachometer signal. File #24 was not utilized because it contained sections that
were unreadable. With the 100 kHz sampling rate, there were between 897 and 904 samples
within the period defined by the tachometer signal; all of these samples were used and then zero-
padded to obtain 1,024 samples per period. Subsequently, 1,024-point power spectral density
(PSD) estimates were computed for each period, after smoothing the data using a Kaiser-Bessel
window. The PSDs were then clustered into groups of 20 and ensemble averaged. The resulting
data vector of dimension 512, however, was too large for practical computation of the necessary
PCA transformation matrix. Therefore, the PSDs were decimated by a factor of three to ease
the computational burden; this resulted in reducing each PSD from 512 values to 179. The data
were not decimated in the time domain to avoid the effects that this would have on the STFTs.
Decimation by three in the time domain would cause loss of all information in the upper two-
thirds of the STFT,! whereas decimation in the frequency domain maintained information at

'For example, with a 100 kHz sampling rate, spectral values are obtained from zero to 50 kHz; at a sampling
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all frequencies, albeit at a courser resolution. The decimation operation is similar to averaging
adjacent spectral lines to form a reduced set that still spans the original bandwidth. The resulting
features were next normalized over the interval 0,1}. Lastly, the data were split into training and
evaluation databases, each containing roughly halt of the exemplars. To test the robustness of
the classification algorithms, three different methods were used to effect this division; in the first
approach, different data files were assigned randomly to the training and evaluation databases;
in the second approach, data ezemplars were apportioned randomly; in the third approach, data
ezemplars from the first half of individual time series were used for training, and exemplars from
the second half were used for evaluation.

Since data were available at multiple torque levels within each fault category, a method was
needed to reduce the within-class variance caused by changing torque levels, while simultaneously
maintaining the between-class variance. Methods to accomplish this have been used before in”
sonar target recognition. In one study [3], a method was needed to reduce variation associated
with the aspect angle of a target, while still being able to distinguish between different targets. In
the present case, PCA was used to extract features within a class that tended to vary least with
respect to torque level; these features are associated with the sinallest eigenvalues. This process
was used to find the 50 principal components within each class; these principal components
account for the least amount of variance. Use of eight different one-vs.-all, binary-output neural
networks, each specialized to recognize a single fault {or no-faul%) class, were synthesized using
CLASS [4] to provide a capability to di.tinguish between classes.

As discussed earlier, CLASS neural networks output estimates of the true a posteriori classification
probabilities. To use the eight neural network outputs to reach a classification decision, the highest
output probability was deemed to indicate the correct class, and the given exemplar ‘was said to
be of that class.

Use of any single accelerometer channel was found to lead to at least a few misclassifications.
Therefore, all eight accelerometer channels were employed. To enable utilization of all accelerom-
eter channels, eight binary-output neural networks were synthesized for each fault category (one
for each accelerometer channel); the corresponding network output probabilities within each class
were then averaged. This therefore required training of 64 different neural networks. A final fault
category decision was reached based on the resulting probabilities in the same fashion as with the
single channel method — i.e., that network whose output was largest was selected as winner.

Use of all accelerometer channels led to perfect classificatory results on both the training and
evaluation data (where the latter were not used in training the classifier). Indeed, for all three
partitionings of the data considered herein, interrogation of the neural networks with both training
data and evaluation data exemplars always produced perfect classification results (i.e., diagonal
confusior matrices). A typical confusion matrix, shown here for the random file parti -oning, is
providec n Table ITI.

Table ITI: Westland Helicopter Data Evaluation Confusion Matrix
(Multiple Channels, Random File Partitioning)

Model Output

True Class 1 2 3 4 5 6 7 8 | Total
1 1500 0 0 0 0 0 0 0 1500

2 0 250 0 0 0 0 0 0 250

3 0 0 2125 0 0 0 0 0 2125

4 0 0 0 1875 0 0 0 0 1875

5 0 0 0 0 375 0 0 0 375
6 0 0 0 0 0 875 0 0 875

7 0 0 0 0 0 0 1250 0 1250

8 0 0 0 0 0 0 0 2625 2625
Total 1500 250 2125 1875 375 875 1250 2625 | 10875

rate of 33.3 kHz, spectral values range from zero to 16.7 kHz.
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It is noted that when there are only a few example data files for a given fault class, such as in the
case of Class 2 (see Table II), classificatory results can be dependent somewhat on the assignment
of particular files to the training or evaluation databases. For example, in the case of Fault Class 2
where there were only three fault examples, there are six possible ways in which the three files can
be assigned to the training and evaluation databases (assuming that each database contains at
least one file). In the case of Fault Class 2, it was found that two of the six possible partitionings
led to perfect classification results on the evaluation data, whereas the other four partitionings
resulted in a small number of misclassifications, which never exceeded 0.229% (14 out of 6,125
exemplar evaluations). Such results might be expected when so few data are available for training
purposes.

Conclusions: The results documented in this report demonstrate success in two areas of fault
diagnostics for helicopter transmissions: (1) rapid and accurate fault detection through the appli-
cation of statistical change detection algorithms; and (2) perfect fault isolation (i.e., classification)
using polynomial neural network classifiers synthesized with a constrained minimum logistic-loss
criterion. Several examples of helicopter gearbox data, both seeded and non-seeded, were eval-
uated. The algorithms developed (i.e., statistical chahge detectors and trained neural network
classifiers) are practical computationally, are data dependent rather than system dependent, and
use nonparametric time-series models for change detection and polynomial neural networks for
classification.

A vital characteristic of the non-likelihood ratio (NLR) fault detection algorithm is its robustness
when utilizing reduced-order models. This is important in practice, as models used to monitor
systems will necessarily be approximate. Although under-parametrization leads to some loss of
information, if the model reduction is done well, detection of changes of interest can be achieved
reliably, and all other changes can be treated as nuisances [19]. This provides a capability that is
important in many practical applications (e.g., helicopter rotor transmission health monitoring).
Inadequacy in the whitening model then becomes a secondary issue, affecting mainly detection
efficiency. The use of neural networks is expected to play a significant role in the practical and
flexible application of statistical change detection techniques. Here neural networks may be used
as estimators to enhance detection when processing nonlinear and/or non-Gaussian data, and to
automate the syntheses of both linear and nonlinear detectors.

Other desirable attributes of the NLR fault detection algorithm are its capabilities for quickest
possible change detection (on-line algorithm) and maximum detection sensitivity (off-line algo-
rithm) when the true models are unknown. The methodology is sufficiently general to be applicable
across mechanical system designs without significant re-engineering effort. The algorithm does
not rely on ad hoc feature characteristics, acting instead as a novelty detector, thereby obviating
the need to collect examples of possible fault signature patterns for training purposes. The algo-
rithm should enable more automatic syntheses of change detectors, placing the design burden on
the adaptive algorithm, rather than the human. Without such automation, it is unlikely that the
huge cost-savings potential of condition-based maintenance can be captured.

Best results w:re obtained with use of the ZBB/NLR multivariate algorithm and with enserr™le-
averag-ed, rather than time-averaged, detection statistics; the former are applicable whenever an
adequate shaft-rate signal, s~h as a once-per-revolution tachometer pulse, is available (or can
be derived g14]). Fault detection results on the CH-47D hehoopter data are especially promising,
. because little attempt was made to use an optimal mode! structure to capture appropriate feature
characteristics of the data or to whiten the data. In terms of the former, a simple AR(10) model
was used, causing the algorithm to rely on the first ten autocorrelation coefficients for detection. In
termslof the latter, the AR(10) model parameters were all set to zero, eliminating data whitening
entirely.

Based on analyses of other data not reported on herein (see [10, 12]), it is likely that the difference
statistically between different “normal” machines will be as large as those between normal and
faulted machines, at least where faults in the latter case are incipient. This suggests that the
detector may need to be “trained” on data taken from the particular machine in which changes
are to be detected.

The excellent results obtained for fault classification also attest to the robustness of logistic-loss
classifiers, since no special effort was required to achieve the demonstrated results. (Indeed, only




one approach to data pre-processing and to training of a classifier was attempted for the CH-46E
helicopter gearbox data; still, perfect single-look fault classification results were obtained!) This
suggests that the polynomial neural network classifiers are also likely to perform well with other
input features, including parameters obtained on-line through adaptation of the fault detection
model.
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